2,024 research outputs found

    Lutte contre les cercosporioses du bananier aux Antilles françaises Banatrace, un système d'information géographique multi-acteurs pour la gestion et la traçabilité des épandages aériens

    Get PDF
    [Departement_IRSTEA]Ecotechnologies [TR1_IRSTEA]INSPIREBanatrace est un système d'information intégrant les tâches de gestion des épandages aériens qui incombent aux opérateurs dans le cadre de la lutte contre la cercosporiose de la banane en Guadeloupe et en Martinique. Cet outil multi-acteurs est l'aboutissement d'un travail d'analyse-conception réalisé par le Cemagref. En combinant une base de données répartie et des fonctions d'information géographique, il répond aux différents besoins de traçabilité imposée par la réglementation récente sur les épandages aériens. Il assure l'interface entre le gestionnaire, les opérateurs aériens, les planteurs, les groupements de producteurs, et l'administration. Au-delà de l'efficacité obtenue dans les taches de gestion, il contribue à améliorer la sécurité des personnes et la protection des cours d'eau et de l'environnement. / " Banatrace " is an information system integrating the European rules and regulations relative to the aerial spraying of pesticide over the banana plantations. It helps to the fight against the cercosporia contamination in the French West Indies. This tool aims to fulfill the information needed by the different parties involved in this process: user manager, planters, aerial treatment companies, planters' cooperatives and administration. It includes DBMS and GIS functionalities in order to program the treatments and to record all events, leading to a better traceability. Moreover carrying out treatment management, it contributes to improve people security and environment protection

    The Dearth of z~10 Galaxies in all HST Legacy Fields -- The Rapid Evolution of the Galaxy Population in the First 500 Myr

    Get PDF
    We present an analysis of all prime HST legacy fields spanning >800 arcmin^2 for the search of z~10 galaxy candidates and the study of their UV luminosity function (LF). In particular, we present new z~10 candidates selected from the full Hubble Frontier Field (HFF) dataset. Despite the addition of these new fields, we find a low abundance of z~10 candidates with only 9 reliable sources identified in all prime HST datasets that include the HUDF09/12, the HUDF/XDF, all the CANDELS fields, and now the HFF survey. Based on this comprehensive search, we find that the UV luminosity function decreases by one order of magnitude from z~8 to z~10 at all luminosities over a four magnitude range. This also implies a decrease of the cosmic star-formation rate density by an order of magnitude within 170 Myr from z~8 to z~10. We show that this accelerated evolution compared to lower redshift can entirely be explained by the fast build-up of the dark matter halo mass function at z>8. Consequently, the predicted UV LFs from several models of galaxy formation are in good agreement with this observed trend, even though the measured UV LF lies at the low end of model predictions. In particular, the number of only 9 observed candidate galaxies is lower, by ~50%, than predicted by galaxy evolution models. The difference is generally still consistent within the Poisson and cosmic variance uncertainties. However, essentially all models predict larger numbers than observed. We discuss the implications of these results in light of the upcoming James Webb Space Telescope mission, which is poised to find much larger samples of z~10 galaxies as well as their progenitors at less than 400 Myr after the Big Bang.Comment: 13 pages, 6 figures, minor updates to match accepted versio

    The size-star formation relation of massive galaxies at 1.5<z<2.5

    Full text link
    We study the relation between size and star formation activity in a complete sample of 225 massive (M > 5 x 10^10 Msun) galaxies at 1.5<z<2.5, selected from the FIREWORKS UV-IR catalog of the CDFS. Based on stellar population synthesis model fits to the observed restframe UV-NIR SEDs, and independent MIPS 24 micron observations, 65% of galaxies are actively forming stars, while 35% are quiescent. Using sizes derived from 2D surface brightness profile fits to high resolution (FWHM_{PSF}~0.45 arcsec) groundbased ISAAC data, we confirm and improve the significance of the relation between star formation activity and compactness found in previous studies, using a large, complete mass-limited sample. At z~2, massive quiescent galaxies are significantly smaller than massive star forming galaxies, and a median factor of 0.34+/-0.02 smaller than galaxies of similar mass in the local universe. 13% of the quiescent galaxies are unresolved in the ISAAC data, corresponding to sizes <1 kpc, more than 5 times smaller than galaxies of similar mass locally. The quiescent galaxies span a Kormendy relation which, compared to the relation for local early types, is shifted to smaller sizes and brighter surface brightnesses and is incompatible with passive evolution. The progenitors of the quiescent galaxies, were likely dominated by highly concentrated, intense nuclear star bursts at z~3-4, in contrast to star forming galaxies at z~2 which are extended and dominated by distributed star formation.Comment: 6 pages, 4 figures, accepted for publication in Ap

    First Frontier Field Constraints on the Cosmic Star-Formation Rate Density at z~10 - The Impact of Lensing Shear on Completeness of High-Redshift Galaxy Samples

    Get PDF
    We search the complete Hubble Frontier Field dataset of Abell 2744 and its parallel field for z~10 sources to further refine the evolution of the cosmic star-formation rate density (SFRD) at z>8. We independently confirm two images of the recently discovered triply-imaged z~9.8 source by Zitrin et al. (2014) and set an upper limit for similar z~10 galaxies with red colors of J_125-H_160>1.2 in the parallel field of Abell 2744. We utilize extensive simulations to derive the effective selection volume of Lyman-break galaxies at z~10, both in the lensed cluster field and in the adjacent parallel field. Particular care is taken to include position-dependent lensing shear to accurately account for the expected sizes and morphologies of highly-magnified sources. We show that both source blending and shear reduce the completeness at a given observed magnitude in the cluster, particularly near the critical curves. These effects have a significant, but largely overlooked, impact on the detectability of high-redshift sources behind clusters, and substantially reduce the expected number of highly-magnified sources. The detections and limits from both pointings result in a SFRD which is higher by 0.4+-0.4 dex than previous estimates at z~10 from blank fields. Nevertheless, the combination of these new results with all other estimates remain consistent with a rapidly declining SFRD in the 170 Myr from z~8 to z~10 as predicted by cosmological simulations and dark-matter halo evolution in LambdaCDM. Once biases introduced by magnification-dependent completeness are accounted for, the full six cluster and parallel Frontier Field program will be an extremely powerful new dataset to probe the evolution of the galaxy population at z>8 before the advent of the JWST.Comment: 10 pages, 7 figures, changed to match accepted version to appear in Ap

    Orbitally-driven Peierls state in spinels

    Full text link
    We consider the superstructures, which can be formed in spinels containing on B-sites the transition-metal ions with partially filled t2g levels. We show that, when such systems are close to itinerant state (e.g. have an insulator-metal transition), there may appear in them an orbitally-driven Peierls state. We explain by this mechanism the very unusual superstructures observed in CuIr2S4 (octamers) and MgTi2O4 (chiral superstructures) and suggest that similar phenomenon should be observed in NaTiO2 and possibly in some other systems.Comment: 4 pages, 3 figure

    Optical Spectroscopy of Distant Red Galaxies

    Full text link
    We present optical spectroscopic follow-up of a sample of Distant Red Galaxies (DRGs) with K 2.3, in the Hubble Deep Field South, the MS 1054-03 field, and the Chandra Deep Field South. Spectroscopic redshifts were obtained for 15 DRGs. Only 2 out of 15 DRGs are located at z < 2, suggesting a high efficiency to select high-redshift sources. From other spectroscopic surveys in the CDFS targeting intermediate to high redshift populations selected with different criteria, we find spectroscopic redshifts for a further 30 DRGs. We use the sample of spectroscopically confirmed DRGs to establish the high quality (scatter in \Delta z/(1+z) of ~ 0.05) of their photometric redshifts in the considered deep fields, as derived with EAZY (Brammer et al. 2008). Combining the spectroscopic and photometric redshifts, we find that 74% of DRGs with K 2. The combined spectroscopic and photometric sample is used to analyze the distinct intrinsic and observed properties of DRGs at z 2. In our photometric sample to K < 22.5, low-redshift DRGs are brighter in K than high-redshift DRGs by 0.7 mag, and more extincted by 1.2 mag in Av. Our analysis shows that the DRG criterion selects galaxies with different properties at different redshifts. Such biases can be largely avoided by selecting galaxies based on their rest-frame properties, which requires very good multi-band photometry and high quality photometric redshifts.Comment: Accepted for publication in the Astrophysical Journal, 13 pages, 8 figures, 5 table
    • …
    corecore